The Effect of Increasing Concentrations of Omega-3 Fatty Acids from either Flaxseed Oil or Preformed Docosahexaenoic Acid on Fatty Acid Composition, Plasma Oxylipin, and Immune Response of Laying Hens.
Abstract
BACKGROUND
There is a lack of nutrition guidelines for the feeding of omega-3 polyunsaturated fatty acids (PUFA) to laying hens. Knowledge as to whether the type and concentrations of α-linolenic acid (ALA) and/or docosahexaenoic acid (DHA) in the diet can make a difference to the birds' immune responses when subjected to a lipopolysaccharide (LPS) challenge is limited.
OBJECTIVES
The study was designed to determine the potential nutritional and health benefits to laying hens when receiving dietary omega-3 PUFA from either ALA or DHA.
METHODS
A total of 80 Lohmann LSL-Classic (white egg layer, 20 wk old) were randomly assigned to 1 of 8 treatment diets (10 hens/treatment), provided 0.2%, 0.4%, 0.6%, or 0.8% of total dietary omega-3 PUFA, provided as either ALA-rich flaxseed oil or DHA-enriched algal biomass. After an 8-wk feeding period, the birds were challenged with Escherichia coli-derived LPS (8 mg/kg; i.v. injection), with terminal sample collection 4 h after challenge. Egg yolk, plasma, liver, and spleen samples were collected for subsequent analyses.
RESULTS
Increasing dietary omega-3 supplementation yielded predictable responses in egg yolk, plasma, and liver fatty acid concentrations. Dietary intake of ALA contributed mainly to ALA-derived oxylipins. Meanwhile, eicosapentaenoic acid- and DHA-derived oxylipins were primarily influenced by DHA dietary intake. LPS increased the concentrations of almost all the omega-6 PUFA-, ALA-, and DHA-derived oxylipins in plasma and decreased hepatic mRNA expression of COX-2 and 5-LOX (P < 0.001) involved in the biosynthesis of oxylipins. LPS also increased mRNA expression of proinflammatory cytokine IFN-γ and receptor TLR-4 (P < 0.001) in the spleen.
CONCLUSIONS
These results revealed that dietary intake of ALA and DHA had unique impacts on fatty acid deposition and their derived oxylipins and inflammatory responses under the administration of LPS in laying hens.