Bioconversion of Cheese Whey and Food By-Products by Phaeodactylum tricornutum into Fucoxanthin and n-3 Lc-PUFA through a Biorefinery Approach.
Abstract
This study investigates the potential of utilizing three food wastes
cheese whey (CW), beet molasses (BM), and corn steep liquor (CSL) as alternative nutrient sources for the cultivation of the diatom Phaeodactylum tricornutum, a promising source of polyunsaturated eicosapentaenoic acid (EPA) and the carotenoid fucoxanthin. The CW media tested did not significantly impact the growth rate of P. tricornutum; however, CW hydrolysate significantly enhances cell growth. BM in cultivation medium enhances biomass production and fucoxanthin yield. The optimization of the new food waste medium was conducted through the application of a response surface methodology (RSM) using hydrolyzed CW, BM, and CSL as factors. The results showed a significant positive impact of these factors (p < 0.005), with an optimized biomass yield of 2.35 g L(-1) and a fucoxanthin yield of 3.64 mg L(-1) using a medium composed of 33 mL L(-1) of CW, 2.3 g L(-1) of BM, and 2.24 g L(-1) of CSL. The experimental results reported in this study showed that some food by-products from a biorefinery perspective could be utilized for the efficient production of fucoxanthin and other high-added-value products such as eicosapentaenoic acid (EPA).