UHPLC-Q-Exactive Orbitrap MS/MS-based untargeted lipidomics reveals molecular mechanisms and metabolic pathways of lipid changes during golden pomfret (Trachinotus ovatus) fermentation.
Abstract
Fermented golden pomfret (a popular marine fish product) is prepared via spontaneous fermentation. However, no comprehensive analysis has been reported on its lipid composition and metabolism. Herein, UHPLC-MS/MS-based untargeted lipidomic analysis identified 998 lipids (six classes; 29 subclasses) in fermented golden pomfret, including glycerolipids (47.70%) and glycerophospholipids (32.06%). As fermentation proceeded, triglyceride and diglyceride contents increased and subsequently decreased, while that of poly-unsaturated fatty acid-containing lipids increased (including those with docosahexaenoic acid, eicosapentaenoic acid, and docosapentaenoic acid). Pathway enrichment analysis identified seven lipid-related metabolic pathways, with the glycerophospholipid pathway found to be the most pertinent. Moreover, the decreased abundance of phosphatidylethanolamines and phosphatidylcholines during fermentation results from their high unsaturated fatty acid (FA) content. Indeed, essential FA contents increase following fermentation, due to their occurrence as glycerolipid side chains. Collectively, the results of this study provide a theoretical reference for optimizing the quality of fermented fish products.