Back

A biological rationale for the disparate effects of omega-3 fatty acids on cardiovascular disease outcomes.

Abstract

The omega-3 fatty acids (n3-FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) rapidly incorporate into cell membranes where they modulate signal transduction pathways, lipid raft formation, and cholesterol distribution. Membrane n3-FAs also form specialized pro-resolving mediators and other intracellular oxylipins that modulate inflammatory pathways, including T-cell differentiation and gene expression. Cardiovascular (CV) trials have shown that EPA, administered as icosapent ethyl (IPE), reduces composite CV events, along with plaque volume, in statin-treated, high-risk patients. Mixed EPA/DHA regimens have not shown these benefits, perhaps as the result of differences in formulation, dosage, or potential counter-regulatory actions of DHA. Indeed, epa and DHA have distinct, tissue-specific effects on membrane structural organization and cell function.

This review summarizes

(1) results of clinical outcome and imaging trials using n3-FA formulations; (2) membrane interactions of n3-FAs; (3) effects of n3-FAs on membrane oxidative stress and cholesterol crystalline domain formation during hyperglycemia; (4) n3-FA effects on endothelial function; (5) role of n3-FA-generated metabolites in inflammation; and (6) ongoing and future clinical investigations exploring treatment targets for n3-FAs, including COVID-19.

Authors

Sherratt, Samuel C R,Libby, Peter,Bhatt, Deepak L,Mason, R Preston
Published Date 2022 Jul