Manipulation of fatty acid profile and nutritional quality of Chlorella vulgaris by supplementing with citrus peel fatty acid.
Abstract
Microalgae could be an excellent resource of functional and essential fatty acids. To achieve viable microalgal biomass production, mass cultivation of microalgae is required; however, the high cost of nutrients is the obstacle. An inexpensive and nutritious material is required to feed Chlorella vulgaris in the pharmaceutical and food sectors. Citrus peel waste with a valuable nutritional quality could be one of the promising and inexpensive candidates. In this study, the fatty acid extract from different citrus peels was used as the organic nutrient source for the cultivation of Chlorella. The proximate composition of bitter orange, sweet orange, grapefruit, and mandarin peels were determined, and their nutritional quality was evaluated. Total fatty acids from the citrus peel were prepared by acidic methanol hydrolysis and hexane extraction. Fourier transforms infrared (FT-IR) and gas chromatography-mass spectrometry (GC-MS) was used to analyze the fatty acid composition and nutrient composition. Fatty acids from the citrus peels were added to the Chlorella culture medium to study their influences on biomass, lipid production, fatty acid profile, and nutritional quality of Chlorella. The most predominant citrus peel fatty acids were linoleic, palmitic, oleic, linolenic, and stearic acids. The citrus peels contain polyunsaturated, saturated, and monounsaturated fatty acids. The most unsaturated fatty acids were omega-6, omega-3, omega-9, and omega-7. The citrus peel had acceptable atherogenicity, thrombogenicity, omega-6/omega-3, peroxidizability, hypocholesterolemic, and nutritive value indices. The major fatty acids of Chlorella were palmitic, linoleic, oleic, alpha-linolenic, gamma-linolenic, 4,7,10,13-hexadecatetraenoic, palmitoleic, 7,10-hexadecadienoic, 7,10,13-hexadecatrienoic, lauric and 5,8,11,14,17-eicosapentaenoic acids. Chlorella contains polyunsaturated, saturated, and monounsaturated fatty acids. The most unsaturated fatty acids contain omega-6, omega-3, omega-9, and omega-7. Chlorella had acceptable atherogenicity, thrombogenicity, omega-6/omega-3, hypocholesterolemic, peroxidizability, and nutritive value indices. Supplementation of Chlorella with citrus peels fatty acid increases total biomass, lipid content, and nutritional quality of Chlorella. The present research shows that citrus peels have good nutritional quality and could be used for the inexpensive cultivation of Chlorella biomass with potential utility for food application.