Back

Bioactive extract of Morchella esculenta ameliorates cyclophosphamide-induced mitochondrial dysfunction and cardiotoxicity by modulating KEAP1/NRF2 and pro-inflammatory genes expression.

Abstract

Prevention of anticancer drugs-induced cardiotoxicity remains an imperative area of oncology research as it continues to be a major challenge in cancer chemotherapy. This study was undertaken to investigate the protective effect of methanol extract of Morchella esculenta (ME) against cyclophosphamide (CP)-induced cardiotoxicity. Myocardial damage was assessed by biochemical and histopathological methods. Proinflammatory cytokines gene expression was determined by RT-PCR analysis. To assess the mitochondrial dysfunction, TCA cycle and electron transport chain complexes enzymes activities were determined. Chemical finger print of ME was accomplished by HPTLC. CP (200 mg/kg) treated animals showed elevation in cardiac injury markers which was attenuated by ME (p < 0.05). CP-induced decline of antioxidant status and expression of nuclear factor erythroid 2-related factor 2 were restored by ME. CP-induced expression of NF-ĸB, IL1-β, IL-6, TNF-α, COX-2 and iNOS (p < 0.05) was attenuated by ME (500 mg/kg). Bioactive compounds namely, 5-eicosapentaenoicacid (C20H30O2), 8-hydroxyoctadecadienoic acid (C18H32O3), 4,4-dipo-zetacarotene (C30H44), CynarosideA (C21H32O10) present in the extract might be responsible for cardioprotection. The findings reveal the protective effect of ME against CP-induced cardiomyopathy.

Authors

Das, Sneha,Ajith, Thekkuttuparambil A,Janardhanan, Kainoor Krishnankutty,Harikumaran Thampi, B S
Published Date 2024 Sep