Back

Advanced treatment and Resource recovery of brewery wastewater by Co-cultivation of filamentous microalga Tribonema aequale and autochthonous Bacteria.

Abstract

To use unicellular microalgae to remove waste nutrients from brewery wastewater while converting them into algal biomass has been explored but high-cost treatment and low-value biomass associated with current technologies have prevented this concept from further attempts. In this study, a filamentous microalga Tribonema aequale was introduced and the alga can grow vigorously in brewery wastewater and algal biomass concentration could be as high as 6.45 g L(-1) which can be harvested by a cost-effective filtration method. The alga together with autochthonous bacteria removed majority of waste nutrients from brewery wastewater. Specifically, 85.39% total organic carbon (TOC), 79.53% total dissolved nitrogen (TN), 93.38% ammonia nitrogen (NH(3)-N) and 71.33% total dissolved phosphorus (TP) in brewery wastewater were rapidly removed by co-cultivation of T. aequale and autochthonous bacteria. Treated wastewater met the national wastewater discharge quality, and resulting algal biomass contained large amounts of high-value products chrysolaminarin, palmitoleic acid (PLA) and eicosapentaenoic acid (EPA). It is anticipated that reduced cost of algal harvesting coupled with value-added biomass could make T. aequale as a promising candidate for brewery wastewater treatment and resource utilization.

Authors

Su, Hang,Wang, Kui,Lian, Jie,Wang, Lan,He, Yuqing,Li, Meng,Han, Danxiang,Hu, Qiang
Published Date 2023 Dec 15